
Mathematieal Programming 3 (1972) 86-100. North-Holland Publishing Company

CUT SEARCH METHODS IN INTEGER PROGRAMMING

Fred GLOVER
University of Colorado, Boulder, Colorado, U.S.A.

Received 18 January 1971
Revised manuscript received 5 November 1971

Cut search is a new approach for solving integer programs based on extending edges of a
cone to probe the solution space for sets of hyperplanes that are "proxies" for solution points
in the space. Once all proxy hyperplanes associated with a given point have been intersected by
at least one of the extended edges, this point is included in a set of points to be examined for
feasibility (algorithmically or by inspection). Thereupon, all edges of the cone are extended an
additional distance to create a cut by passing a hyperplane through the endpoints of these
extended edges.

The flexibility of the cut search procedure permits a variety of strategies for exploring and
cutting into the solution space. One useful version arises by taking the proxy hyperplanes to be
members of a "positive" or "semipositive" coordinate system. Relative to such a system the
procedure can be organized to reduce the set of vectors to be examined for feasibility and also
to generate deeper cuts at the end of the edge probe.

1. Introduction

Cut search is a new approach for solving integer programs that
consists of two alternating phases: an edge probe phase and a cut phase.
The edge probe phase extends edges of a cone to intersections with
sets of "proxy" hyperplanes which are associated with candidate solu-
tion points. As these sets of proxy hyperplanes are encountered, their
associated candidate solutions are examined for feasibility (algorithmi-
cally or by inspection). At the elected termination of the edge probe
phase, all finite edges of the cone are extended an additional distance,
and a cut is adjoined to the problem by passing a hyperplane through
the endpoints of the extended edges. A variety of strategies for apply-
ing cut search are indicated, with special emphasis on a version of cut
search that provides particularly deep cuts and reduces the number of
candidate solutions to be tested for feasibility.

Cut-search methods in integer programming 87

2. Preliminary notation and definitions

We shall write the integer programming problem in the form

minimize cx,
subject to A x <-_ b,

x _-> 0 and integer,

where x is an n-dimensional column vector and the matrix A and vec-
tors b and c are assumed to be dimensioned conformably.

Introducing a vector v of slack variables, we may represent the fore-
going in the column tableau formulation

maximize x 0 = c (- x) ,
subject to x = O - (- x) ,

v = b + A (- x) ,
x -_> O, v _-> 0 and x integer,

or, still more compactly, in the current tableau formulation

maximize x o = c o + c (- t) ,

subject to y = B o + B (- t) ,
y -_> 0 and x integer.

Here y = (x) and t is the vector of current nonbasic variables. The com-
ponents of t are identified as a subset of the components of y in the
current tableau by a set of n equations of the form

Yi = - (- t j) , f e N = {1, ...,n} ,

where i depends on].
We shall define S to be the set of feasible y vectors for the integer

program, i.e., S = {y lY = B o - B t , y >= 0 and x integer}, and define the
cone C associated with the current linear programming tableau by
C = { Y l y = B o - B t , t >= O} (hence C c S).

Given numbers t* > O, one may identify the hyperplane through the
n points B o - B / t ~ , ~ ~ N, on the edges of the cone C, by the equation

~ (1 / t ~) t] = 1 , (1)

88 Fred Glover

as may be verified by observing that (1) is "solved" upon setting t~ = t~
for any single]. The associated half space

~(1 / tp) t/ _> 1 (2)

determines a "cu t" (relative to B0) since it eliminates the solution
y = B 0 from the set of feasible solutions to the linear program. (In par-
ticular, y = B 0 occurs for y = Bo-Bt only when t = 0, due to the full
column rank of B in the linear programming tableau.)

For the cut (2) to be compatible with the constraints of the integer
program, it must not eliminate any points of the region S. We express
this by reference to the truncated cone C*, which we define to be the
intersection of C with the open half space

~(1 / t~) t i< 1, (3)

i.e., C* = {y lY = Bo-Bt ~ C and t satisfies (3)}. Then the cut (2) is
defined to be legitimate (relative to S) if C* n S = 0 (this definition
also applies to "feasible solution sets" S for problems other than the
integer programming problem).

3. Convexity cuts

To provide a backdrop against which the cut search ideas may be
put in convenient focus for purposes of comparison and contrast, we
sketch the related " 'convexity" or "intersection" cut ideas that were
first developed in the context of integer programming by Young [12]
and Balas [1] , and in the context of concave programming by Tui
[11]. Our description will follow the exposition of Glover [4] , which
slightly extends the developments of [1] and [121.

Broadly speaking, the convexity cuts apply to any mathematical
programming problem whose feasible solutions imply y ~ C n S, where
C is the cone indicated in the preceding section and S may be any of a
rather large class of sets. The key restriction on S is the stipulation that
whenever B 0 ~ S, it must be possible to identify a convex region R
whose interior (int(R)) contains B 0 but no points of S. This stipulation
leads to the following result.

Cut-search methods in integer programming 89

Convexity cut lemma. Assume R is convex, B o ~ int(R) and int(R) n S
= ~. Then for any numbers t[> 0 such that the points B o - B / t 7, j E N,
are all contained in R, the cut (2)

G(1/ t?) tj >= 1

is legitimate relative to S.

Proof. The assumptions imply that the truncated cone C* is contained
in int(R). Thus C* n S = 0 follows immediately from int(R) N S = 0.

Balas and Young first introduced this result for the case in which R is
a hypersphere (or, in the mixed integer problem, a hypercylinder)
whose boundary contains integer points but whose interior does not.
(Balas' results apply to the general mixed integer problem and Young's
results apply to a class of 0 -1 problems.) A variety of cuts based on
different choices of R are indicated in Glover [5], exploiting the more
general statement of the convexity cut lemma given above. More recent.
ly, Balas and Young have also developed interesting generalizations of
their original work [1, 2, 13]. An intriguing cut, obtained when R
is the "dual of the unit hypercube", is developed by Balas, Bowman,
Glover and Sommer [3]. Other applications of related ideas, particular.
ly in the context of Tui's approach to concave programming, are
developed by Ragavachari [101 and Glover and Klingman [7]. Special
results for a class of "generalized lattice point" problems (which in-
dudes the mixed integer programming problem as a special case) are
also given in Glover and Klingman [8].

4. Cut search 1

4.1. Fundamental notions
The cut search approach uses the same cut inequality as the con-

vexity cut approach, but generates different values of the cut coeffi-
cients and relies on a different strategy for guaranteeing the legitimacy

1 Several of the results of this section were initially developed in a slightly different manner
in [6]. A conceptually related, but procedurally intriguing departure from these ideas has been
recently proposed by C.A. Burdet in [4].

90 Fred Glover

of the cut. In particular, rather than determine the numbers tj* > 0 so
that the points B o - B j t f" all lie in a predetermined convex set R, the cut
search approach verifies the legitimacy of the cut by constructing a
superset S* of C* n S for which the condition S* = 0 is easily deter-
mined. This is accomplished in a manner so that the precise composi-
tion of S* is always completely specified. Consequently, whenever
S* ~t 0, it is nevertheless possible to "search" among the elements of S*
(either directly, or using an auxiliary algorithm) to discover whether
C* n S is itself empty.

If in fact C* • S ~ 0, the ability of the procedure to identify the com-
position of C* n S (as a subset of S*) makes it possible to obtain feasi-
ble solutions to the integer program. This may, of course, be particular-
ly advantageous for problems in which "near-optimal" solutions are
acceptable.

Finally, upon determining the composition of C* n S, the procedure
extends the edges of the cone C still further (ignoring the composition
of the new C* n S) to provide a particularly deep cut. Alternatively, if
desired, one can simply continue the edge probe, although often at an
increasing computational expense.

The key to constructing S* is to associate a set of proxy hyperplanes
with each vector y = (x), and include y in S* only if all of its proxy
hyperplanes are intersected by at least one of the edges

CI.* = { y [y = B o - B / t / , 0<= t i < t~}

of the truncated cone C*.
The basis for this construction rule is the following result.

First cut search lemma. Assume y' ~ C* and let H be any hyperplane
containing y'. Then there is at least one edge C F of C* that intersects H.

Proof. Let H + be the half space determined by H that contains B 0. If
the lemma is false, then B o - B j t j E H + for all] and all t! satisfying
0 <-_ tj < tp. But this implies C* c H + - H , and hence C* n H must be
empty, contrary to the assumption that y ' ~ C* n H.

Note that the foregoing lemma also holds (by essentially the same
proof) when C* and C[are replaced by their closures C* and C/*.

Cut-search methods in integer programming 91

A convenient use of the lemma is to let the proxy hyperplanes for a
given y vector be simply the set of coordinate hyperplanes for that
vector. In the context of coordinate hyperplanes, the first cut search
lemma implies the following result.

Corollary. I f y' e C*, then for each component YI o f y' there must be
at least one edge Cp o f C* and a point y* E Cj.* such that y~ = y*.

Procedurally, this corollary has the following implications. Since
each y is uniquely determined from the initial tableau by its associated
x vector, and since only the integer x vectors are of interest, it suffices
to restrict at tention to the integer coordinate hyperplanes for the com-
ponents of x. Moreover, as the edges C~ are parametrically extended
(by increasing the t [values from 0), it is easy to keep track of integer
bounds L i and U i for each variable x i such that the integer values of x i
encountered by the edges C]* are precisely those satisfying L i <= x i <= U i.
The intervals determined by these bounds provide the set S* referred to
earlier. That is,

S* = {y I L ~ x ~ g and x integer} .

Clearly, from these observations it is particularly easy to verify
whether S* = ~, and, if S* ~ ~, to determine the exact composition of
S*. The importance of this is underscored by the fact that, having
examined the elements y e S*, it is possible to introduce a cut defined
relative to a new truncated cone C + that is strictly larger than C*, as we
n o w s h o w .

4.2. The edge probe and the resulting cut
In order to specify the exact procedural details of the cut search

approach we require the following additional definitions and notation.

4.2.1. The cone C +. The truncated cone C + and its edges C 7 are de-
fined relative to a specified set of values t T in the same way that C*
and C F are defined relative to the values t* We let C + and C~- denote /_"
the closures of C + and @ (just as C* and Cj.* denote the closures of C*
and C]*). In the present context t [will always be positive for all]. How-
ever, possibly some t~ = 0, in which case we define ~* = C* = {B 0 } .

92 Fred Glover

4.2.2. Admissible hyperplanes. An admissible (coordinate) hyperplane
is one of the form x i = k, where k is an integer satisfying L ° <- k <- U~i,
and where L ° and U~ ° are known integer bounds on x i implied by the
problem constraints (hence L ° _-> 0 and U ° -< oo).

4.2.3. The set S*. The set S* = { y l L <- x <- Uand x integer} is defined
to consist of those y that lie on the intersection of n admissible hyper-
planes each of which is intersected by at least one of the edges C~ of the
truncated cone if*. Thus, for t* = 0, we may determine the L and U
vectors for S* by the rule LiL= (b io) (the least integer -> bio) and Ui=
[b / 0] (the greatest integer =< b io) , where bio denotes the i-th component
of B 0 (restricted here to i c N, the index set of the components of x). 2
Then we note that S* 4= 0 (and hence L = U) for t* = 0 only if y = B 0
implies x is integer. We will subsequently give rules for identifying L and
U for S* as the components of t* are increased from 0.

4.2.4. The t 7 values. The number t 7 represents the "next value" to be
assumed by tp (for some j) in the cut search procedure, and is deter-
mined relative to the cone C* by the definition

~ = Min{ti l t / >= 0 and ~ intersects at least one admissible
yperplane not intersected by any edge of C* (where t7 = oo

if no such t/exists)}
or equivalently

t7 --- Max { tiIC 7 does not intersect any admissible_ hyperplanes
except those intersected by the edges of C*} .

Numerically, the values of t7 satisfying the foregoing definition may be
calculated by reference to the L and U vectors according to the rule

l 7 =Min {Oi} ,
i ~ N

where, relative to the selected index j, 0 i is defined by 3

0 i =

(b i o - L i + !) / b i] if bi /> 0 and L i > L ° ,

(b i o - U i - 1) / b q if bi/ < O and U i< U ° ,

otherwise.

2 We assume that U ° > x _>L ° is satisfied by the solution y = B o. If not , one may set

Li = Max {L ° (bio> } and Ui= Min{U~l, [bio] } •
3 The calculation of 0 i can be simplified when a new value of t 7 is to be determined, pro-

vided a record is kept of those L i and U i that have changed since the previous calculation.

Cu t-search methods in in teger programming 9 3

The complete cut search procedure can now be specified as follows.

4.2.5. The cut search procedure
1. If B 0 ~ S and the current tableau is dual feasible, the problem is

solved. Otherwise, set t* = 0.
2. Select one of the following two alternatives:
(a) Cut alternative. Adjoin the cut

~)(1 > 1 /t;)tj__

Then, using the simplex method, iterate to a new current tableau and
return to instruction 1.

(b) Edge probe ("search") alternative. Select a finite edge Ct~ of C*
and extend it until it coincides with ~p, thus determining a new cone

- - r - - -p - - + - - r - - ~

C' (i.e., the edges of C are given by Cp =C~ and Cj =C] for] C p).
Then continue to instruction 3.

3. Examine the vectors y in S'-S* for feasibility (if any exist),
where S' is defined relative to C' in the same way that S* is defined
relative to C*. 4 Keep track of the currently best feasible solution.

4. Redefine C* to be C' and S* to be S'. Return to instruction 2
unless all edges of C* (or of C +) are now infinite. In this latter case, the
best feasible solution found at instruction 3 is optimal (or, if no feasible
solution has been found, then the problem does not have a feasible
solution).

It is particularly interesting to note that, while the cut search proce-
dure extends only one of the edges of C* at instruction 2(b), the cut of
instruction 2(a) arises by extending all edges of C* without requiring
the examination of any vectors for feasibility. This "something for
nothing" boost at instruction 2(a) is made possible by the fact that the
cut need not be legitimate relative to S, but only relative to S-S* ,
since initially S* = 0 and all increments S~-S * to S* are examined at
instruction 3. s (It is nevertheless true that the depth of the cut may
increase, as edges are extended, even though S* itself may not change.)

The justification of the foregoing procedure, and in particular of the
cut of instruction 2(a), is given by the following result.

Because of the defmltlon of tp, the rule for determining S in terms o f S . is particularly
simple. If ~ = ~ , none of the L i or U i values defining S* change. Otherwise, for those i ~ N
such that t] = Oi, L i is replaced by L i - 1 if bi] > 0 and U i is replaced by Ui+ 1 if bi] < O.

5 The procedure can be applied in the situation where S* is not initially empty, i.e., where
S* = {Bo}, simply by recording Bo as the first feasible solution.

94 Fred Glover

Second cut search lemma. For the values t~ > 0 defined relative to the
values tp as indicated,

C+ n S c S *

and the cut

~(1 / t~) tj ~ 1

is legitimate relative to S - S * .

Proof. First, y ~ S* if and only if y lies on the intersection of n ad-
missible hyperplanes, each of which is intersected by one of the edges
of C*. Also, by construction, the edges of C ÷ intersect the same set of
admissible coordinate hyperplanes as the edges of C* (although each of
the non-infinite edges of C ÷ intersects at least one admissible hyper-
plane not intersected by the edges of C*). Finally, y E S only i fy lies on
an admissible hyperplane. Thus, by the first cut search lemma, it follows
that C + n S c S*. Consequently, C ÷ n (S - S *) = ~ , which verifies the
legitimacy of the cut relative to S - S * .

5. Characteristic features of the cut search procedure

A number of the key features of cut search can be glimpsed by
reference to the description of the preceding section. First, S* typically,
but not invariably, remains empty during the first step (or in general,
the first several steps). Second, the cone C* may be "vacuous" in the
sense that one of its edges may not be extended a positive length, but
the edges of C ÷ are always positive and increase at each iteration.
Third, the nature of the cut and the composition of S* depends on the
successive choices of the edges to extend at instruction 2(b). This is a
particularly critical feature, for it enables the "inclination" of the cut
to be determined largely by design. Likewise, it allows some freedom to
specify which portion of the cone to probe for feasible integer solu-
tions. This freedom of choice makes it possible to select edgesaccording
to a variety of criteria; as, for example, that of minimizing the number
of new vectors added to S* at each iteration.

A particularly interesting characteristic of the method derives from

Cut-search methods in integer programming 95

the fact that the edge extensions are defined relative only to admissible
hyperplanes. This implies that the coordinate hyperplanes "beyond"
the region of such admissible hyperplanes are ignored by the method
and clearly permits some of the edge extensions to be somewhat greater
than would otherwise be the case. Also, the number of vectors in S* is
reduced, so that there are fewer vectors to examine for feasibility. In
particular, the ability of the method to exploit bounded variables in
this fashion suggests the value of redefining the "original" x variables
to include slack variables of constraints that are "almost binding" at the
vertex B 0 .

It is also possible to anticipate some intrinsic limitations of the meth-
od. As the edge extensions increase, the number of vectors in S* will
tend to grow at an erratic but generally increasing rate. Also, for some
structures of the cone C, many of the points in S* may be infeasible,
not only relative to the full set of problem constraints, but relative to
C itself.

These disadvantages are partially offset by the fact that the composi-
tion of S* will tend to include points that are indeed likely candidates
for "good solutions", at least relative to C. Moreover, the absolute size
of S* may not be a valid indication of the effort involved in determin-
ing whether the members of S ' -S* are feasible, particularly if this
determination is made by a more sophisticated means than simple
inspection (see section 7). Finally, we shall subsequently specify a
modified procedure by which S' -S* may be replaced by a significantly
smaller set of vectors, thereby offsetting the connection between the
increasing increments to S* and the number of vectors currently to be
examined for feasibility.

6. Finiteness of the cut search procedure

We shall establish finiteness for a simple version of the procedure of
section 4 by showing that the cuts produced by this version coincide
with cuts for which finiteness has already been established. This version
is a particularly "unadventurous" one, because the cut is adjoined
before it becomes necessary to examine any elements of S ' - S * (i.e.,
before S ' - S * becomes nonempty).

To describe this version, we introduce the notion of a "blocked"
set S*, which may be used to provide an advanced starting point for
the cut search procedure.

96 Fred Glover

We will say that S*_ is blocked_ (given S* = 0) if, for each finite C~,
the replacement of Cff by C~p to yield the cone C-' (as in instruction
2(b)) results in S' 4: 0.

It is clearly possible for S* to be unblocked and yet for there to
exist a finite Cff whose replacement by C~p results in S' ¢ ~. However,
one strategy for applying cut search is to select a Cff at instruction 2(b)
that will result in S' ¢ ~ only if S* is blocked, i.e., only if a number of
the initial iterations of the me thod can be condensed into a "single
step" by the following observation.

A necessary condit ion for S* to be blocked is the existence of a
noninteger bio such that the endpoint of ~jj intersects x i = [b/0] or
X i = (b io) (i.e., b i o - b i] t ; = [b i 0] o r (b i o)) for every]. Thus, the values
tT, / ~ N, at which this condi t ion holds (for a given index i) can be
directly identified, and the corresponding t~ values (and the set S*)
that would ordinarily "give rise" to these t~ values can be determined at
a generally smaller computat ional expense than the process of succes-
sively iterating through instruction 2(b).

It may of course happen that the set S* obtained in the manner just
indicated is not blocked after all. However, if S* is not blocked, there
must be a noninteger bio (other than the one previously selected) for
which [b/0] < bio-bi]t; < (bio) for all], and new (larger) t~ values can
be computed relative to this bio that will cause one of the two sides of
the foregoing inequality to hold as an equality for each /. In this
manner a blocked S* still can be identified, conveniently bypassing a
number of iterations of instruction 2(b).

The question now arises: what will be the nature of the cut adjoined
at instruction 2(a) if the cut search procedure is s topped as soon as a
blocked S* is determined (thereby avoiding the examinat ion of any
vectors y at instruction 3)? The answer is that the resulting cut will be
precisely one of the Gomory mixed integer cuts of [9]. More particu-
larly, as pointed out in [5] , the cuts of [9] arise from the inequality
(2) by extending edges of C to the boundaries of the convex set given
by [bio] <= x i <= (bio), and hence it follows that the previously indicated
necessary condi t ion for S* to be blocked gives the full set of Gomory
cuts. 6 Moreover, by the foregoing discussion, the cut corresponding to

6 The Gomory cuts and the cut search procedure alike may be applied to variables that are
integer linear combinations of the x i, as elaborated more fully in section 7.

Cut-search methods in integer programming 97

a blocked S* must be one that is deeper along some edge than any
other Gomory cut and thus belongs to the subset of "mutual ly un-
dominated" Gomory cuts. Finiteness of the cut search procedure is
thus assured by periodically determining the edge extensions relative
to a blocked set, by starting from a blocked S* and probing further. 7

In the next section we give a modified cut search procedure that can
produce deeper cuts than discussed here even in the case in which no y
vectors are examined for feasibility.

7. A modified cut search procedure

The procedure of section 4, while illustrative of several of the main
ideas of cut search, is nevertheless naive in two principal ways: (i) there
is no need to restr ict attention to coordinate hyperplanes for the origi-
nal problem variables and (ii) it is not truly necessary, if an appropriate
set of variables is considered, to examine all points of S'-S* for
feasibility.

The first point is obvious, but significant. The logic of the previous
discussion remains valid if x is replaced by a possibly different vector
of integer variables, say w. The vector w may be created in a variety of
ways, as, for example, from various integer linear combinations of the
original variables. It may have more or fewer than n components, some
of which are continuous rather than integer (in which case the defini-
tions of S* and L and U must be modified appropriately).

The use of w in place of x requires the identification of precise
correspondences (one-to-one, one-to-many~ etc.) between these two
vectors in order to check elements of S ' -S* for feasibility. This process
of checking for feasibility need not (and in some instances cannot)
consist of simple itemization of elements of S ' -S* to determine
whether they lie in S. Instead, an auxiliary algorithm may be used for
this process. 8

An alternative is to stop the procedure while S ' -S* is still empty,
as discussed in section 6. While this alternative produces the Gomory
cuts in the naive version of the method, it may produce cuts that are

7 We of course predicate this s ta tement on the assumpt ions that x o is integer valued and
that the appropriate lexicographic considerat ions are accommodated .

8 For example, one may apply a branch and bound or implicit enumera t ion procedure to
the problem of maximizing x0 , subject t o y E (S ' -S*) n S.

98 Fred Glover

somewhat stronger than the Gomory cuts in more sophisticated versions
(as we will show).

The second limiting characteristic o f the naive version allows the pro-
cedure to be substantially improved once the proper relationships are
taken into account. The basic idea for overcoming this limitation - i.e.,
for avoiding an exhaustive examination of elements of S ' - S * for feasi-
bility (either directly or algorithmically) - is to create a "positive"
coordinate system relative to the cone C. That is, x is to be replaced
by a new vector of integer variables w created in such a manner that w
is a nondecreasing function of t. More particularly, if x = B ~ - B l t is
the current tableau representation of x (taken from the full representa-
tion y = Bo-Bt) , then w may be writ ten w = MBlo-MBlt , where M is
an all integer matrix with an all integer inverse and MB 1 <= O. Enlarging
y (if necessary) to include the components of w, and denoting the index
set of these components by N 0, the condition that w be nondecreasing
as a function of t may be expressed by bi! <= 0 for a l l j and for all i • N o .

Clearly, then, the cut search procedure can be applied by replacing
the x vector in the definitions of S*, etc., with the set ofYi, i • N O . The
significance of such a replacement is compelling, for it allows the set
S '= {y[L~ <= Yi <= U~ and Yi integer, i • No} in instruction 3 to be re-
placed by a smaller set S" = {y [L] <= Yi ~ U} and Yi integer, i • N 0},
where L~ = Min/{bio-bi / tT}. 9

The justification of this assertion is given by the following result.

Third cut search lemma. Ira vector y • S ' -S* is feasible for the integer
programming problem, then y • S " - S*; i.e.,

(S ' -S*) n S = (S " - S *) n S .

Proof. By the nonnegativity of the bii, i • No, we have S " • S' (see
footnote 9), and thus it is necessary only to show (S ' - S *) n S c
(S " - S *) n S. Suppose on the contrary there exists a vector y ' •

F r! (S ' -S*) n S such that yp < Lp for some p • N 0. The cut determined
from C + is legitimate relative to S - S * by the second cut search lemma;
i.e., C + n (S - S *) = ~ . Thus, since (S ' - S *) n S = S'n (S-S*) , it follows

? t
that y ' • C +. Now, let t] be given so that yp = bp-bp]tj for each j

9 If y = B o does not satisfy the lower bound restrictions for the Yi, i E No, then L~: can more
generally be defined to be Max{Li', Minj{bio- bijt~} }.

Cut-search methods in integer programming 99

(letting t) = oo if bp] = 0). Because bp] <= 0 for all j, if the hyperplane
t t ! yp = yp is intersected by an edge of C, then yp > bp] and hence tj > 0

for all j. Consequently, the numbers t) are the intersection values of
f edges of C with the hyperplane yv = yp. Letting C' be defined in terms

of t ' in the same way that C* is defined in terms of t*, we have y ' ~ C'.
t¢ Furthermore, from the definition of Lp and again from bpj <= O, it

r t! follows that t) < t 7 for all j (since by assumption yp < Lp). Thus,
C' c C + and hence y ' ~ C +, proving the lemma by contradiction.

There are a variety of ways of exploiting the foregoing lemma. First,
of course, it is not truly essential that the transformation w = Mx
provide a fully positive coordinate system; that is, the lemma may be
applied to any subset of the Yi, iE No, such that bi¢<= 0 for all j (re-
placing L' i by L~ only for these i). l o

Second, the earlier remarks of section 7 concerning the latitude of
dealing with variables other than the original x i apply here as well.
Thus, for example, M may be integer but lack an all integer inverse (in
which case some of the points of S " - S * may not be in S because they
yield noninteger x vectors).

Third, strictly within the domain of positive (integer) coordinate
systems, there are many different transformations w =Mx that are
acceptable. Studies devoted to ways of characterizing and generating
"good" transformations would seem especially worthwhile. Appropriate
characterizations become more difficult and perhaps also more crucial
in the case of x variables that are close to their bounds at the solution
y =B0, as in the case of 0 - 1 problems. For such problems the trans-
formation w = Mx must be determined with care since the w i may lie
farther from their identifiable bounds than the x i when y = B 0 . (This
means, loosely, that there may be more admissible hyperplanes in the
vicinity of the w i than in the vicinity Of the xi, thereby increasing the
number of possibilities for "holding back" the edge extensions.)

Fourth, the lemma justifies a procedure of adjoining the cuts
Yi ~= (L]), i ~ NO, at instruction 2(a). This may eliminate somewhat
more of the region S* n C than the cut taken from C ÷ by itself. (These
cuts also have integer slack variables, which can be used in creating
further integer transformations to positive or "semi-positive" coordinate
systems.)

10 There is no need to consider a "negat ive" coordinate system, since such a system be-
comes positive simply by replacing Yi with -Yi , i ~ N O .

100 Fred Glover

Fifth, S'-S* may contain several vectors to be examined for feasi-
bility in instruction 3, while the set S"-S* (which replaces S'-S* in
the modified method) may be empty. One may take advantage of this
by calculations that condense several steps into one when these steps
leave S"-S* empty. As already intimated, S* may remain unbtocked
for the modified method ~ ~ when it is blocked for the original method.

References

[1] Egon Balas, "The intersection cut - A new cutting plane for integer programming"
(Management Sciences Research Report No. 187, Carnegie-Mellon University, October,
1969) Operations Research 19 (1971) 19-39.

[2] Egon Balas, "Alternative strategies for using intersection cuts in integer programming",
presented at the TIMS XVII International Conference, London, July 1970.

[3] Egon Balas, V. Joseph Bowman, Fred Glover and David Sommer, "An intersection cut
from the dual of the unit hypercube" (WP #90-69-7, Carnegie-Mellon University, April
1970) Operations Research 19 (1971) 40-44•

[4] Claude A. Burdet, "A class of cuts and related algorithms in integer programming",
Management Sciences Research Report No. 220, Carnegie-Mellon University, September
1970.

[5] Fred Glover, "Convexity cuts", working paper, School of Business, University of Texas,
Austin, December 1969.

[6] Fred Glover, "Convexity cuts and cut search" (MSRS 70-2, School of Business, University
of Colorado at Boulder, July 1970) Operations Research, to appear.

[8] Fred Glover and D. Klingman, "The generalized lattice point problem" (MSRS 71-3,
School of Business, University of Colorado, Boulder, May 1971), presented at the 39th
National OSRA Meeting, Dallas, May 1971.

[9] Ralph Gomory, "An algorithm for the mixed integer problem", Research Memorandum
RM-2597, Rand Corporation, Santa Monica, 1960.

[10] M. Raghavachari, "On the zero-one integer programming problem" (Technical Report
No. 20, Department of Statistics, Carnegie-Mellon University, Pittsburgh, Pennsylvania),
Operations Research 17 (1969) 680-685.

[11] Hoang Tui, "Concave programming under linear constraints", Doklady Akademii Nauk
SSSR, 1964 (in Russian), Soviet Mathematics (1964) 1437-1440 (English translation).

[12] Richard D. Young, "New cuts for a special class of 0 -1 integer programs", Research
Report in Applied Mathematics and Systems Theory, Rice University, Houston, Texas,
October 1968.

[13] Richard D. Young, "Hypercylindrically deduced cuts in zero-one integer programs"
(Rice University, Houston, Texas, June 1970), Operations Research, to appear.

11 We may define S* to be blocked for the modified method if S"-S* has always previously
• ~ - I -

been empty hut cannot currently remain empty for any choice of Cp at instruction 2(b).

