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Cut search is a new approach for solving integer programs based on extending edges of a 
cone to probe the solution space for sets of hyperplanes that are "proxies" for solution points 
in the space. Once all proxy hyperplanes associated with a given point have been intersected by 
at least one of the extended edges, this point is included in a set of points to be examined for 
feasibility (algorithmically or by inspection). Thereupon, all edges of the cone are extended an 
additional distance to create a cut by passing a hyperplane through the endpoints of these 
extended edges. 

The flexibility of the cut search procedure permits a variety of strategies for exploring and 
cutting into the solution space. One useful version arises by taking the proxy hyperplanes to be 
members of a "positive" or "semipositive" coordinate system. Relative to such a system the 
procedure can be organized to reduce the set of vectors to be examined for feasibility and also 
to generate deeper cuts at the end of the edge probe. 

1. Introduction 

Cut search is a new approach for solving integer programs that 
consists of two alternating phases: an edge probe phase and a cut phase. 
The edge probe phase extends edges of a cone to intersections with 
sets of "proxy" hyperplanes which are associated with candidate solu- 
tion points. As these sets of proxy hyperplanes are encountered, their 
associated candidate solutions are examined for feasibility (algorithmi- 
cally or by inspection). At the elected termination of the edge probe 
phase, all finite edges of the cone are extended an additional distance, 
and a cut is adjoined to the problem by passing a hyperplane through 
the endpoints of the extended edges. A variety of strategies for apply- 
ing cut search are indicated, with special emphasis on a version of cut 
search that provides particularly deep cuts and reduces the number of 
candidate solutions to be tested for feasibility. 
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2. Preliminary notation and definitions 

We shall write the integer programming problem in the form 

minimize cx, 
subject to A x  <-_ b, 

x _-> 0 and integer, 

where x is an n-dimensional column vector and the matrix A and vec- 
tors b and c are assumed to be dimensioned conformably. 

Introducing a vector v of  slack variables, we may represent the fore- 
going in the column tableau formulation 

maximize x 0 = c ( - x ) ,  
subject to x = O -  ( - x ) ,  

v = b + A ( - x ) ,  
x -_> O, v _-> 0 and x integer, 

or, still more compactly, in the current  tableau formulation 

maximize x o = c o + c ( - t )  , 

subject to y = B o + B ( - t )  , 
y -_> 0 and x integer. 

Here y = (x) and t is the vector of  current nonbasic variables. The com- 
ponents of  t are identified as a subset of the components  of  y in the 
current tableau by a set of n equations of the form 

Yi = - ( - t j )  , f e N =  {1, ...,n} , 

where i depends on ]. 
We shall define S to be the set of feasible y vectors for the integer 

program, i.e., S = {y lY = B o - B t ,  y >= 0 and x integer}, and define the 
cone C associated with the current linear programming tableau by 
C = { Y l y = B o - B t ,  t >= O} (hence C c  S). 

Given numbers t* > O, one may identify the hyperplane through the 
n points B o - B / t ~ ,  ~ ~ N,  on the edges of the cone C, by the equation 

~ ( 1 / t ~ )  t] = 1 , (1) 
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as may be verified by observing that (1) is "solved" upon setting t~ = t~ 
for any single ]. The associated half space 

~(1 / tp )  t/ _> 1 (2) 

determines a "cu t"  (relative to B0) since it eliminates the solution 
y = B 0 from the set of feasible solutions to the linear program. (In par- 
ticular, y = B 0 occurs for y = Bo-Bt  only when t = 0, due to the full 
column rank of  B in the linear programming tableau.) 

For the cut (2) to be compatible with the constraints of  the integer 
program, it must not  eliminate any points of  the region S. We express 
this by reference to the truncated cone C*, which we define to be the 
intersection of  C with the open half space 

~(1 / t~ ) t i<  1,  (3) 

i.e., C* = {y lY = Bo-Bt  ~ C and t satisfies (3)}. Then the cut  (2) is 
defined to be legitimate (relative to S) if C* n S = 0 (this definition 
also applies to "feasible solution sets" S for problems other than the 
integer programming problem). 

3. Convexity cuts 

To provide a backdrop against which the cut search ideas may be 
put  in convenient focus for purposes of  comparison and contrast, we 
sketch the related " 'convexity" or "intersection" cut ideas that were 
first developed in the context  of  integer programming by Young [12] 
and Balas [1] ,  and in the context  of  concave programming by Tui 
[11].  Our description will follow the exposition of  Glover [4] ,  which 
slightly extends the developments of  [ 1 ] and [ 121. 

Broadly speaking, the convexity cuts apply to any mathematical 
programming problem whose feasible solutions imply y ~ C n S, where 
C is the cone indicated in the preceding section and S may be any of  a 
rather large class of  sets. The key restriction on S is the stipulation that 
whenever B 0 ~ S, it must be possible to identify a convex region R 
whose interior (int(R)) contains B 0 but  no points of  S. This stipulation 
leads to the following result. 
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Convexity cut lemma. Assume R is convex, B o ~ int(R) and int(R) n S 
= ~. Then for  any numbers t[ > 0 such that the points B o - B / t  7, j E N, 
are all contained in R, the cut (2) 

G(1/ t? )  tj >= 1 

is legitimate relative to S. 

Proof. The assumptions imply that the truncated cone C* is contained 
in int(R). Thus C* n S = 0 follows immediately from int(R) N S = 0. 

Balas and Young first introduced this result for the case in which R is 
a hypersphere (or, in the mixed integer problem, a hypercylinder) 
whose boundary contains integer points but whose interior does not. 
(Balas' results apply to the general mixed integer problem and Young's 
results apply to a class of 0 -1  problems.) A variety of  cuts based on 
different choices of R are indicated in Glover [5],  exploiting the more 
general statement of the convexity cut lemma given above. More recent. 
ly, Balas and Young have also developed interesting generalizations of 
their original work [1, 2, 13]. An intriguing cut, obtained when R 
is the "dual of the unit hypercube",  is developed by Balas, Bowman, 
Glover and Sommer [3]. Other applications of  related ideas, particular. 
ly in the context of Tui's approach to concave programming, are 
developed by Ragavachari [101 and Glover and Klingman [7]. Special 
results for a class of "generalized lattice point" problems (which in- 
dudes  the mixed integer programming problem as a special case) are 
also given in Glover and Klingman [8]. 

4. Cut search 1 

4.1. Fundamental notions 
The cut search approach uses the same cut inequality as the con- 

vexity cut approach, but generates different values of the cut coeffi- 
cients and relies on a different strategy for guaranteeing the legitimacy 

1 Several of the results of this section were initially developed in a slightly different manner 
in [6]. A conceptually related, but procedurally intriguing departure from these ideas has been 
recently proposed by C.A. Burdet in [4]. 
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of the cut. In particular, rather than determine the numbers tj* > 0 so 
that the points B o - B j t  f" all lie in a predetermined convex set R, the cut 
search approach verifies the legitimacy of the cut by constructing a 
superset S* of C* n S for which the condition S* = 0 is easily deter- 
mined. This is accomplished in a manner so that the precise composi- 
tion of  S* is always completely specified. Consequently, whenever 
S* ~t 0, it is nevertheless possible to "search" among the elements of  S* 
(either directly, or using an auxiliary algorithm) to discover whether  
C* n S is  itself empty.  

If in fact C* • S ~ 0, the ability of  the procedure to identify the com- 
position of C* n S (as a subset of  S*) makes it possible to obtain feasi- 
ble solutions to the integer program. This may, of  course, be particular- 
ly advantageous for problems in which "near-optimal" solutions are 
acceptable. 

Finally, upon determining the composition of C* n S, the procedure 
extends the edges of the cone C still further  (ignoring the composition 
of the new C* n S) to provide a particularly deep cut. Alternatively, if 
desired, one can simply continue the edge probe, although often at an 
increasing computational expense. 

The key to constructing S* is to associate a set of  proxy hyperplanes 
with each vector y = (x), and include y in S* only if all of  its proxy 
hyperplanes are intersected by at least one of the edges 

CI.* = { y [ y = B o - B / t / ,  0<= t i < t~} 

of the truncated cone C*. 
The basis for this construction rule is the following result. 

First cut search lemma. Assume y' ~ C* and let H be any hyperplane 
containing y'. Then there is at least one edge C F of  C* that intersects H. 

Proof. Let H + be the half space determined by H that contains B 0. If 
the lemma is false, then B o - B j t  j E H + for all ] and all t! satisfying 
0 <-_ tj < tp. But this implies C* c H + - H ,  and hence C* n H must be 
empty, contrary to the assumption that y '  ~ C* n H. 

Note that the foregoing lemma also holds (by essentially the same 
proof) when C* and C[ are replaced by their closures C* and C/*. 
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A convenient use of  the lemma is to let the proxy hyperplanes for a 
given y vector be simply the set of  coordinate hyperplanes for that 
vector. In the context  of  coordinate hyperplanes, the first cut search 
lemma implies the following result. 

Corollary. I f  y'  e C*, then for each component  YI o f  y'  there must  be 
at least one edge Cp o f  C* and a point  y* E Cj.* such that y~ = y*. 

Procedurally, this corollary has the following implications. Since 
each y is uniquely determined from the initial tableau by its associated 
x vector, and since only the integer x vectors are of interest, it suffices 
to restrict at tention to the integer coordinate hyperplanes for the com- 
ponents of x. Moreover, as the edges C~ are parametrically extended 
(by increasing the t [  values from 0), it is easy to keep track of  integer 
bounds L i and U i for each variable x i such that the integer values of x i 
encountered by the edges C]* are precisely those satisfying L i <= x i <= U i. 
The intervals determined by these bounds provide the set S* referred to 
earlier. That is, 

S* = {y I L ~ x ~ g and x integer} . 

Clearly, from these observations it is particularly easy to verify 
whether  S* = ~, and, if S* ~ ~, to determine the exact composition of 
S*. The importance of  this is underscored by the fact that, having 
examined the elements y e S*, it is possible to introduce a cut defined 
relative to a new truncated cone C + that is strictly larger than C*, as we 
n o w  s h o w .  

4.2. The edge probe and the resulting cut 
In order to specify the exact procedural details of  the cut search 

approach we require the following additional definitions and notation. 

4.2.1. The cone C +. The truncated cone C + and its edges C 7 are de- 
fined relative to a specified set of  values t T in the same way that C* 
and C F are defined relative to the values t* We let C + and C~- denote /_" 
the closures of C + and @ (just as C* and Cj.* denote the closures of C* 
and C]*). In the present context  t [  will always be positive for all ]. How- 
ever, possibly some t~ = 0, in which case we define ~* = C* = {B 0 } . 
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4.2.2. Admissible  hyperplanes. An admissible (coordinate) hyperplane 
is one of  the form x i = k, where k is an integer satisfying L ° <- k <- U~i, 
and where L ° and U~ ° are known integer bounds on x i implied by the 
problem constraints (hence L ° _-> 0 and U ° -< oo). 

4.2.3. The set S*. The set S* = { y l L  <- x <- Uand  x integer} is defined 
to consist of those y that lie on the intersection of  n admissible hyper- 
planes each of which is intersected by at least one of  the edges C~ of the 
truncated cone if*. Thus, for t* = 0, we may determine the L and U 
vectors for S* by the rule LiL= (b io )  (the least integer -> bio ) and Ui= 
[ b / 0 ]  (the greatest integer =< b io ) ,  where bio denotes the i-th component  
of B 0 (restricted here to i c N, the index set of  the components  of  x). 2 
Then we note that S* 4= 0 (and hence L = U) for t* = 0 only if y = B 0 
implies x is integer. We will subsequently give rules for identifying L and 
U for S* as the components of t* are increased from 0. 

4.2.4. The t 7 values. The number t 7 represents the "next  value" to be 
assumed by tp (for some j) in the cut search procedure, and is deter- 
mined relative to the cone C* by the definition 

~ = Min{ti l t  / >= 0 and ~ intersects at least one admissible 
yperplane not  intersected by any edge of C* (where t7 = oo 

if no such t/exists)} 
or equivalently 

t7 --- Max { tiIC 7 does not intersect any admissible_ hyperplanes 
except those intersected by the edges of C*} . 

Numerically, the values of  t7 satisfying the foregoing definition may be 
calculated by reference to the L and U vectors according to the rule 

l 7 =Min {Oi} , 
i ~ N  

where, relative to the selected index j, 0 i is defined by 3 

0 i = 

( b i o - L i + ! ) / b i ]  if bi />  0 and L i > L ° , 

( b i o - U  i - 1 ) / b q  if bi/ < O and U i< U ° , 

otherwise.  

2 We assume that  U ° > x  _>L ° is satisfied by the solution y = B  o. If not ,  one may set 

Li = Max {L ° (bio> } and Ui= Min{U~l, [bio] } • 
3 The calculation of  0 i can be simplified when a new value of t 7 is to be determined,  pro- 

vided a record is kept  of  those L i and U i that  have changed since the previous calculation. 
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The complete cut search procedure can now be specified as follows. 

4.2.5. The cut search procedure 
1. If B 0 ~ S and the current tableau is dual feasible, the problem is 

solved. Otherwise, set t* = 0. 
2. Select one of the following two alternatives: 
(a) Cut alternative. Adjoin the cut 

~)(1 > 1 /t;)tj__ 

Then, using the simplex method, iterate to a new current tableau and 
return to instruction 1. 

(b) Edge probe ("search") alternative. Select a finite edge Ct~ of C* 
and extend it until it coincides with ~p, thus determining a new cone 

- - r  - - -p  - - +  - - r  - - ~  

C' (i.e., the edges of C are given by Cp =C~ and Cj =C] for ] C p). 
Then continue to instruction 3. 

3. Examine the vectors y in S'-S* for feasibility (if any exist), 
where S' is defined relative to C' in the same way that S* is defined 
relative to C*. 4 Keep track of the currently best feasible solution. 

4. Redefine C* to be C' and S* to be S'. Return to instruction 2 
unless all edges of C* (or of C +) are now infinite. In this latter case, the 
best feasible solution found at instruction 3 is optimal (or, if no feasible 
solution has been found, then the problem does not have a feasible 
solution). 

It is particularly interesting to note that, while the cut search proce- 
dure extends only one of the edges of C* at instruction 2(b), the cut of 
instruction 2(a) arises by extending all edges of C* without requiring 
the examination of any vectors for feasibility. This "something for 
nothing" boost at instruction 2(a) is made possible by the fact that the 
cut need not be legitimate relative to S, but only relative to S-S* ,  
since initially S* = 0 and all increments S~-S * to S* are examined at 
instruction 3. s (It is nevertheless true that the depth of the cut may 
increase, as edges are extended, even though S* itself may not change.) 

The justification of the foregoing procedure, and in particular of the 
cut of instruction 2(a), is given by the following result. 

Because of the defmltlon of  tp, the rule for determining S in terms o f S .  is particularly 
simple. If  ~ = ~ ,  none of  the L i or U i values defining S* change. Otherwise, for those i ~ N  
such that t] = Oi, L i is replaced by L i - 1 if bi] > 0 and U i is replaced by Ui+ 1 if bi] < O. 

5 The procedure can be applied in the situation where S* is not  initially empty,  i.e., where 
S* = {Bo}, simply by recording Bo as the first feasible solution. 
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Second cut search lemma. For the values t~ > 0 defined relative to the 
values tp as indicated, 

C+ n S c S * 

and the cut 

~(1 / t~)  tj ~ 1 

is legitimate relative to S - S * .  

Proof. First, y ~ S* if and only if y lies on the intersection of n ad- 
missible hyperplanes, each of which is intersected by one of the edges 
of C*. Also, by construction, the edges of C ÷ intersect the same set of 
admissible coordinate hyperplanes as the edges of C* (although each of 
the non-infinite edges of C ÷ intersects at least one admissible hyper- 
plane not intersected by the edges of C*). Finally, y E S only i fy  lies on 
an admissible hyperplane. Thus, by the first cut search lemma, it follows 
that C + n S c S*. Consequently, C ÷ n ( S - S * ) = ~ ,  which verifies the 
legitimacy of the cut relative to S - S * .  

5. Characteristic features of the cut search procedure 

A number of the key features of cut search can be glimpsed by 
reference to the description of the preceding section. First, S* typically, 
but not invariably, remains empty during the first step (or in general, 
the first several steps). Second, the cone C* may be "vacuous" in the 
sense that one of its edges may not be extended a positive length, but 
the edges of C ÷ are always positive and increase at each iteration. 
Third, the nature of the cut and the composition of S* depends on the 
successive choices of the edges to extend at instruction 2(b). This is a 
particularly critical feature, for it enables the "inclination" of the cut 
to be determined largely by design. Likewise, it allows some freedom to 
specify which portion of the cone to probe for feasible integer solu- 
tions. This freedom of choice makes it possible to select edgesaccording 
to a variety of criteria; as, for example, that of minimizing the number 
of new vectors added to S* at each iteration. 

A particularly interesting characteristic of the method derives from 
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the fact that the edge extensions are defined relative only to admissible 
hyperplanes. This implies that the coordinate hyperplanes "beyond" 
the region of such admissible hyperplanes are ignored by the method 
and clearly permits some of the edge extensions to be somewhat greater 
than would otherwise be the case. Also, the number of vectors in S* is 
reduced, so that there are fewer vectors to examine for feasibility. In 
particular, the ability of the method to exploit bounded variables in 
this fashion suggests the value of redefining the "original" x variables 
to include slack variables of constraints that are "almost binding" at the 
vertex B 0 . 

It is also possible to anticipate some intrinsic limitations of the meth- 
od. As the edge extensions increase, the number of vectors in S* will 
tend to grow at an erratic but generally increasing rate. Also, for some 
structures of the cone C, many of the points in S* may be infeasible, 
not only relative to the full set of problem constraints, but relative to 
C itself. 

These disadvantages are partially offset by the fact that the composi- 
tion of S* will tend to include points that are indeed likely candidates 
for "good solutions", at least relative to C. Moreover, the absolute size 
of S* may not be a valid indication of the effort involved in determin- 
ing whether the members of S ' -S*  are feasible, particularly if this 
determination is made by a more sophisticated means than simple 
inspection (see section 7). Finally, we shall subsequently specify a 
modified procedure by which S' -S* may be replaced by a significantly 
smaller set of vectors, thereby offsetting the connection between the 
increasing increments to S* and the number of vectors currently to be 
examined for feasibility. 

6. Finiteness of the cut search procedure 

We shall establish finiteness for a simple version of the procedure of 
section 4 by showing that the cuts produced by this version coincide 
with cuts for which finiteness has already been established. This version 
is a particularly "unadventurous" one, because the cut is adjoined 
before it becomes necessary to examine any elements of S ' - S *  (i.e., 
before S ' - S *  becomes nonempty). 

To describe this version, we introduce the notion of a "blocked" 
set S*, which may be used to provide an advanced starting point for 
the cut search procedure. 
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We will say that  S*_ is blocked_ (given S* = 0) if, for each finite C~, 
the replacement  of Cff by C~p to yield the cone C-' (as in instruction 
2(b)) results in S' 4: 0. 

It is clearly possible for S* to be unblocked and yet for there to 
exist a finite Cff whose replacement by C~p results in S' ¢ ~. However, 
one strategy for applying cut search is to select a Cff at instruction 2(b) 
that  will result in S' ¢ ~ only if S* is blocked,  i.e., only if a number  of 
the initial iterations of the me thod  can be condensed into a "single 
step" by the following observation. 

A necessary condit ion for S* to be blocked is the existence of a 
noninteger  bio such that  the endpoint  of ~jj intersects x i = [b/0 ] or 
X i = (b io )  (i.e., b i o - b i ] t ;  = [ b i 0 ]  o r  ( b i o ) )  for every ]. Thus, the values 
tT, / ~  N, at which this condi t ion holds (for a given index i) can be 
directly identified, and the corresponding t~ values (and the set S*) 
that  would ordinarily "give rise" to these t~ values can be determined at 
a generally smaller computat ional  expense than the process of  succes- 
sively iterating through instruction 2(b). 

It may of course happen that  the set S* obtained in the manner  just 
indicated is not  blocked after all. However, if S* is not  blocked,  there 
must  be a noninteger  bio (other than the one previously selected) for 
which [b/0] < bio-bi]t;  < (bio) for all], and new (larger) t~ values can 
be computed  relative to this bio that  will cause one of  the two sides of  
the foregoing inequality to hold as an equality for each /. In this 
manner  a blocked S* still can be identified, conveniently bypassing a 
number  of  iterations of  instruction 2(b). 

The question now arises: what  will be the nature of  the cut adjoined 
at instruction 2(a) if the cut search procedure is s topped as soon as a 
blocked S* is determined (thereby avoiding the examinat ion of  any 
vectors y at instruction 3)? The answer is that  the resulting cut will be 
precisely one of  the Gomory  mixed integer cuts of  [9].  More particu- 
larly, as pointed out  in [5] ,  the cuts of  [9] arise from the inequality 
(2) by extending edges of  C to the boundaries of the convex set given 
by [bio ] <= x i <= (bio), and hence it follows that  the previously indicated 
necessary condi t ion for S* to be blocked gives the full set of  Gomory  
cuts. 6 Moreover, by the foregoing discussion, the cut corresponding to 

6 The Gomory cuts and the cut search procedure alike may be applied to variables that are 
integer linear combinations of the x i, as elaborated more fully in section 7. 
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a blocked S* must be one that is deeper along some edge than any 
other Gomory cut and thus belongs to the subset of  "mutual ly un- 
dominated"  Gomory cuts. Finiteness of  the cut search procedure is 
thus assured by periodically determining the edge extensions relative 
to a blocked set, by starting from a blocked S* and probing further. 7 

In the next  section we give a modified cut search procedure that can 
produce deeper cuts than discussed here even in the case in which no y 
vectors are examined for feasibility. 

7. A modified cut search procedure 

The procedure of section 4, while illustrative of several of  the main 
ideas of cut search, is nevertheless naive in two principal ways: (i) there 
is no need to restr ict  attention to coordinate hyperplanes for the origi- 
nal problem variables and (ii) it is not  truly necessary, if an appropriate 
set of  variables is considered, to examine all points of  S'-S* for 
feasibility. 

The first point is obvious, but significant. The logic of the previous 
discussion remains valid if x is replaced by a possibly different vector 
of integer variables, say w. The vector w may be created in a variety of  
ways, as, for example, from various integer linear combinations of  the 
original variables. It may have more or fewer than n components,  some 
of which are continuous rather than integer (in which case the defini- 
tions of S* and L and U must be modified appropriately). 

The use of  w in place of x requires the identification of precise 
correspondences (one-to-one, one-to-many~ etc.) between these two 
vectors in order to check elements of S ' -S*  for feasibility. This process 
of checking for feasibility need not (and in some instances cannot) 
consist of  simple itemization of elements of S ' -S*  to determine 
whether  they lie in S. Instead, an auxiliary algorithm may be used for 
this process. 8 

An alternative is to stop the procedure while S ' -S*  is still empty,  
as discussed in section 6. While this alternative produces the Gomory 
cuts in the naive version of the method,  it may produce cuts that are 

7 We of  course predicate this s ta tement  on the assumpt ions  that  x o is integer valued and 
that  the  appropriate lexicographic considerat ions are accommodated .  

8 For  example,  one may  apply a branch and bound  or implicit enumera t ion  procedure to 
the problem of maximizing x0 ,  subject  t o y  E (S ' -S*)  n S. 
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somewhat stronger than the Gomory  cuts in more sophisticated versions 
(as we will show). 

The second limiting characteristic o f  the naive version allows the pro- 
cedure to be substantially improved once the proper relationships are 
taken into account. The basic idea for overcoming this limitation - i.e., 
for avoiding an exhaustive examination of  elements of  S ' - S *  for feasi- 
bility (either directly or algorithmically) - is to create a "positive" 
coordinate system relative to the cone C. That is, x is to be replaced 
by a new vector of  integer variables w created in such a manner that w 
is a nondecreasing function of  t. More particularly, if x = B ~ - B l t  is 
the current tableau representation of  x (taken from the full representa- 
tion y = Bo-Bt ) ,  then w may be writ ten w = MBlo-MBlt ,  where M is 
an all integer matrix with an all integer inverse and MB 1 <= O. Enlarging 
y (if necessary) to include the components  of  w, and denoting the index 
set of  these components  by N 0, the condition that w be nondecreasing 
as a function of  t may be expressed by bi! <= 0 for a l l j  and for all i • N  o . 

Clearly, then, the cut search procedure can be applied by replacing 
the x vector in the definitions of S*, etc., with the set ofYi, i • N O . The 
significance of  such a replacement is compelling, for it allows the set 
S '= {y[L~ <= Yi <= U~ and Yi integer, i •  No} in instruction 3 to be re- 
placed by a smaller set S" = {y [L] <= Yi ~ U} and Yi integer, i • N 0}, 
where L~ = Min/{bio-bi / tT}.  9 

The justification of  this assertion is given by the following result. 

Third cut search lemma. Ira vector y • S ' -S*  is feasible for the integer 
programming problem, then y • S " -  S*; i.e., 

(S ' -S*)  n S = ( S " - S * )  n S .  

Proof. By the nonnegativity of  the bii, i • No, we have S " •  S' (see 
footnote  9), and thus it is necessary only to show ( S ' - S * ) n  S c 
( S " - S * ) n  S. Suppose on the contrary there exists a vector y ' •  

F r! (S ' -S*)  n S such that yp < Lp for some p • N 0. The cut determined 
from C + is legitimate relative to S - S *  by the second cut search lemma; 
i.e., C + n ( S - S * ) = ~ .  Thus, since ( S ' - S * ) n  S = S'n (S-S*) ,  it follows 

? t 
that y ' •  C +. Now, let t] be given so that yp = bp-bp]tj for each j 

9 If y = B o does not  satisfy the lower bound restrictions for the Yi, i E No, then L~: can more 
generally be defined to be Max{Li', Minj{bio-  bijt~} }. 
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(letting t) = oo if bp] = 0). Because bp] <= 0 for all j, if the hyperplane 
t t ! yp = yp is intersected by an edge of  C, then yp > bp] and hence tj > 0 

for all j. Consequently,  the numbers t) are the intersection values of  
f edges of  C with the hyperplane yv = yp.  Letting C' be defined in terms 

of t '  in the same way that  C* is defined in terms of  t*, we have y '  ~ C'. 
t¢ Furthermore,  from the definition of Lp and again from bpj <= O, it 

r t! follows that t ) <  t 7 for all j (since by assumption yp < Lp). Thus, 
C' c C + and hence y '  ~ C +, proving the lemma by contradiction. 

There are a variety of ways of  exploiting the foregoing lemma. First, 
of  course, it is not  truly essential that the transformation w = Mx 
provide a fully positive coordinate system; that is, the lemma may be 
applied to any subset of  the Yi, iE  No,  such that bi¢<= 0 for all j (re- 
placing L' i by L~ only for these i). l o 

Second, the earlier remarks of  section 7 concerning the latitude of 
dealing with variables other  than the original x i apply here as well. 
Thus, for example, M may be integer but  lack an all integer inverse (in 
which case some of  the points of  S " - S *  may not be in S because they 
yield noninteger x vectors). 

Third, strictly within the domain of  positive (integer) coordinate 
systems, there are many different transformations w =Mx that are 
acceptable. Studies devoted to ways of  characterizing and generating 
"good"  transformations would seem especially worthwhile. Appropriate 
characterizations become more difficult and perhaps also more crucial 
in the case of  x variables that are close to their bounds at the solution 
y =B0,  as in the case of  0 - 1  problems. For such problems the trans- 
formation w = Mx must be determined with care since the w i may lie 
farther from their identifiable bounds than the x i when y = B 0 . (This 
means, loosely, that there may be more admissible hyperplanes in the 
vicinity of  the w i than in the vicinity Of the xi, thereby increasing the 
number  of  possibilities for "holding back" the edge extensions.) 

Fourth,  the lemma justifies a procedure of  adjoining the cuts 
Yi ~= (L]), i ~  NO, at instruction 2(a). This may eliminate somewhat 
more of  the region S* n C than the cut taken from C ÷ by itself. (These 
cuts also have integer slack variables, which can be used in creating 
further integer transformations to positive or "semi-positive" coordinate 
systems.) 

10 There is no need to consider a "negat ive" coordinate system, since such a system be- 
comes positive simply by  replacing Yi with -Yi ,  i ~ N O . 
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Fifth, S'-S* may contain several vectors to be examined for feasi- 
bility in instruction 3, while the set S"-S* (which replaces S'-S* in 
the modified method) may be empty. One may take advantage of  this 
by calculations that condense several steps into one when these steps 
leave S"-S* empty. As already intimated, S* may remain unbtocked 
for the modified method ~ ~ when it is blocked for the original method. 
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